Submit Manuscript  

Article Details


Analysis of Ion and pH Effects on Iron Response Element (IRE) and mRNA-Iron Regulatory Protein (IRP1) Interactions

Author(s):

Mateen A. Khan*   Pages 1 - 11 ( 11 )

Abstract:


Background: Cellular iron uptake, utilization, and storage are tightly controlled through the action of iron regulatory proteins (IRPs). IRPs achieve this control by binding to IREs-mRNA in the 5'- or 3'-end of mRNAs that encode proteins involved in iron metabolism. The interaction of iron regulatory proteins with mRNAs containing an iron responsive element plays a central role in this regulation. The IRE RNA family of mRNA regulatory structures combines absolutely conserved protein binding sites with phylogenetically conserved base pairs that are specific to each IREs and influence RNA/protein stability. Our previous result revealed the binding and kinetics of IRE RNA with IRP1. The aim of the present study is to gain further insight the differences in protein/RNA stability as a function of pH and ionic strength.

Objective: To determine the extent to which the binding affinity and stability of protein/RNA complex affected by ionic strength and pH.

Methods: Fluorescence spectroscopy was used to characterize IRE RNA-IRP protein interaction.

Results: Scatchard analysis revealed that the IRP1 protein binds to a single IRE RNA molecule. The binding affinity of two IRE RNA/IRP was significantly changed with the change in pH. The data suggests that the optimum binding of RNA/IRP complex occurred at pH 7.6. Dissociation constant for two IRE RNA/IRP increased with an increase in ionic strength, with a larger effect for FRT IRE RNA. This suggests that more numerous electrostatic interactions occur in the ferritin IRE RNA/IRP than ACO2 IRE RNA/IRP complex. Iodide quenching shows that the majority of the tryptophan residues in IRP1 are solvent-accessible, assuming that most of the tryptophan residues contribute to protein fluorescence.

Conclusion: The results obtained from this study clearly indicates that IRE RNA/IRP complex are destabilized by the change in pH and ionic strength. These observations suggest that both pH and ion are important for the assembly and stability of the IRE RNA/IRP complex formation.

Keywords:

Fluorescence, Binding affinity, IRE RNA, IRP1, pH, ionic strength.

Affiliation:

Department of Life Science, College of Science & General Studies, Alfaisal University, Riyadh



Read Full-Text article